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The accurate evaluation of crash causal factors can provide funda-
mental information for effective transportation policy, vehicle design,
and driver education. Naturalistic driving (ND) data collected with
multiple onboard video cameras and sensors provide a unique
opportunity to evaluate risk factors during the seconds leading up
to a crash. This paper uses a National Academy of Sciences-sponsored
ND dataset comprising 905 injurious and property damage crash
events, the magnitude of which allows the first direct analysis (to our
knowledge) of causal factors using crashes only. The results show
that crash causation has shifted dramatically in recent years, with
driver-related factors (i.e., error, impairment, fatigue, and distraction)
present in almost 90% of crashes. The results also definitively show
that distraction is detrimental to driver safety, with handheld
electronic devices having high use rates and risk.

naturalistic driving | crash risk | driver distraction | driver impairment |
driver error

During recent years, the percentage of crashes involving some
type of driver error or impairment before the crash was

thought to be as high as 94% (1). Factors such as vehicle failures,
roadway design or condition, or environment composed lower
crash percentages. Naturalistic driving studies (NDSs) offer a
unique opportunity to study driver performance and behavior
experienced in the real world with actual consequences and risks
(2–4). The NDS research method developed at the Virginia Tech
Transportation Institute (VTTI) involves equipping volunteer
participants’ vehicles with advanced, unobtrusive instrumentation
(e.g., cameras, sensors, radar) that automatically and continuously
collects driving parameters—including speed, time to collision,
global positioning system (GPS) location, acceleration, and eye
glance behavior—from key-on to key-off (2, 5). The recently
completed Second Strategic Highway Research Program Natu-
ralistic Driving Study (SHRP 2 NDS), sponsored by the Trans-
portation Research Board (TRB) of the National Academy of
Sciences (NAS), is the largest NDS of its kind, capturing more
than 35 million miles of continuous naturalistic driving data and 2
petabytes (PB) of video, kinematic, and audio data from more
than 3,500 participants (5).
NDSs provide insight into the factors that cause crashes, giving

researchers the opportunity to observe actual driver behavior and
to accurately understand drivers’ performance during the minutes
or seconds leading up to a crash (6, 7). However, previous NDSs
captured a relatively small number of crashes (2, 8). To obtain a
statistically valid sample of crash factors in earlier NDSs, surrogate
measures (e.g., near-crash events) were integrated into analyses.
Near-crashes are operationally defined as having the observable
factors that could lead to a crash, with one difference present: the
performance of a successful evasive maneuver. Although previous
studies used near-crashes as a surrogate for estimating crash risk,
the accuracy and validity of combining crashes and near-crashes to
estimate driver risk are just beginning to be understood (9). With
the completion of the SHRP 2 NDS, however, researchers now
have access to an order-of-magnitude larger sample size that

allows the sole use of crash events to determine the safety out-
come for risk factor evaluation.
Using the SHRP 2 NDS crash database, this paper focuses on

and addresses the following categories of driver performance and
behavior that contribute to crash events: (i) observable impair-
ment, which was determined from a 20-s precrash video segment;
observable impairment includes apparent drug/alcohol influence,
drowsiness/fatigue, or emotion (i.e., anger, sadness, crying, and/or
emotional agitation) that clearly impacted driver performance;
(ii) driver performance error, including a variety of vehicle opera-
tion and maneuver errors (e.g., failing to yield properly to other
traffic, making an improper turn); (iii) momentary driver judgment
error, including such factors as aggressive driving and speeding;
(iv) observable driver distraction determined from a 6-s precrash
video segment, including the use of in-vehicle and handheld devices,
active interaction with passengers, and outside distractions.

Materials and Methods
Database and Instrumentation. The SHRP 2 NDS dataset comprises more than
2 PB of continuous naturalistic driving data collected during a 3-y period from
more than 3,500 participants, aged 16–98, who resided near the following six
site centers: Buffalo, NY; Tampa, FL; Seattle; Durham, NC; Bloomington, IN;
and State College, PA. The naturalistic driving data were collected auto-
matically from key-on to key-off for every trip taken in one of the volunteer
participants’ vehicles using the VTTI-developed Next Generation (NextGen)
data acquisition system (DAS).

The DAS comprises multiple video images and a still image of the cabin,
permanently blurred to protect the anonymity of nonconsented passengers.
Video output of the DAS includes a quadrant image containing (i) the for-
ward roadway, (ii) the driver’s face and driver-side views, (iii) right rear view,
and (iv) a view of the driver’s interactions with the steering wheel and center
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stack of the vehicle. The DAS also incorporates machine vision-based appli-
cations, accelerometers and rate sensors in three dimensions (i.e., x, y, and z
axes), GPS, forward radar, illuminance and passive cabin alcohol presence
sensors, turn signal state, vehicle network data (as available), and an in-
cident push button. This button could be pressed by the participant when-
ever an incident of possible interest occurred; doing so not only placed a
marker within the data stream for later analysis, it also opened a 30-s audio
recording channel so the participant could briefly describe the incident. Data
collected from various onboard systems were processed and stored in the
DAS continuously for the entire trip.

Customized machine-vision software incorporated into the VTTI DAS
hardware includes lane-tracking information and the driver’s head position
and rotational angle. DAS units also feature cellular machine-to-machine
technology that accepts software upgrades to installed units, transmits events
of interest (e.g., crashes) to project servers, and disseminates DAS function
reports (i.e., self-“health checks”) from the field to researchers and engineers
at the home base. These combined capabilities ensure that important in-
formation is being relayed and that the DAS is functioning properly.

The DAS was custom-designed to include six primary components: main
unit, head unit, network box, radar, radar interface box, and solid-state data
drive. The main unit houses the computing engine for the system. The
electronics for the main unit are encased in a rugged plastic enclosure with
room for the solid-state drive on which data are initially stored.

The SHRP 2 NDS was administered by SHRP 2 of the TRB of the NAS. As such,
access to the website and its data are controlled by user-access levels. The
information available is determined by user status. By federal law, TRB must
monitor usage of the data to ensure compliance with data privacy laws
established by the responsible Institutional Review Boards (IRBs). For further
information about the SHRP 2 NDS database and DAS instrumentation and
management, please refer to ref. 5.

Recruitment. An approximate equal mix of male and female drivers compose
the SHRP 2 NDS dataset, with 1,703 female drivers and 1,559male drivers (280
drivers chose not to provide gender information). Two categories of par-
ticipants are identified in the SHRP 2 NDS: (i) primary participants, who were
the focus of the study and recruitment; and (ii) secondary participants. Pri-
mary participants agreed to have data collected from their main vehicle
when driven during their participation in the study. Primary participants
underwent a battery of functional assessments related to driving capability
and were asked to fill in several questionnaires related to health, risk taking,
etc. Primary participants who were minors at the time of the study enroll-
ment provided assent to participate; consent for their participation was
provided by a parent or guardian. Secondary participants were other adults
who regularly drove one of the instrumented vehicles and granted consent
to have their driving data analyzed. Secondary participants were only asked
to fill in basic demographics and driving history questionnaires.

Participants of the SHRP 2 NDS were covered by the Code of Federal
Regulations (45 CFR 46). To ensure 45 CFR 46 compliance, all human subjects
research conducted during the study was reviewed by several IRBs, including
the NAS IRB, the Virginia Tech IRB, and the IRB of record for each of the
contractor organizations that managed the six data collection sites. In-
formed consent was obtained from all participants.

For more detailed information about the SHRP 2 NDS recruitment process,
please refer to ref. 5.

Event Classification. Data from the SHRP 2 NDS were protected using a so-
phisticated data encryption process. Once data were transferred, decrypted,
and ingested into the final research repository, they were protected by role-
based security. This limited a user’s access based on IRB approvals or the need
to access data elements as guided by SHRP 2 staff. Quality health checks were
regularly performed, including automated quality checks of sensor and video
data. Once ingested into the repository, data were analyzed by trained data
reductionists and researchers.

SHRP 2 NDS data were standardized via variables outlined in a data dic-
tionary, and safety-critical events were classified based on kinematic and
video analyses. To date, more than 1,500 crashes, including minor collisions,
have been identified in the SHRP 2 NDS dataset. Potential crashes were
classified via participant reports, automatic crash notification algorithms on
theDAS, and similar controller area network algorithms run on ingested data.
Once possible events of interest were identified, the classification of actual
crashes occurred via video review, with events categorized as one of the
following: severity 1 [i.e., airbag/injury/rollover/high delta-V crash (virtually
all such crashes would be police reported)], severity 2 (police-reportable
crashes, including police-reported crashes and others of similar severity that

were not reported), severity 3 (crashes involving physical contact with an-
other object), or severity 4 (tire strike, low-risk crashes).

For more detailed information about SHRP 2 NDS event classification,
please refer to ref. 5.

Analysis.During this study, a case-cohort approachwas used to evaluate the risk
associated with each contributing factor of a crash (8, 10). This approach as-
sesses time-variant risk factors for crashes and controls by contrasting exposure
information derived from short time windows—typically those that are sec-
onds long—to maintain relative homogeneous exposure within the window.
The controls are short, free of safety-critical events, and comprise normal
driving episodes, thus representing the exposure of risk factors during normal
driving conditions. It has been shown that, under a proper control sampling
scheme, the odds ratio estimation based on contrasting exposures for crashes
and controls is an approximate to-the-risk rate ratio (10).

The exposure for crashes (i.e., cases) was extracted from short time win-
dows (6 s for distraction and 20 s for error or impairment) of video sur-
rounding the onset of crashes. These windows of time were reviewed by
trained data analysts (5). A rigorous protocol was implemented to ensure the
accuracy of the reduction information (Fig. S1).

To estimate the exposure under the normal, noncrash driving condition, a
two-staged stratified random sampling method was used to select 19,732
control driving segments greater than 5mph. The control driving episodewas
the same length as the crash exposure reduction to ensure the consistency of
exposure information. The first stage determined the number of baselines for
each driver proportional to driving time. The second stage involved total
random sampling within a driver. The sample data reduction protocol for
crashes was implemented within the control driving epochs to extract the
exposure information. A description of the dataset used in this analysis and
relative access instructions are available in ref. 11.

The stratified random baselines also provided an opportunity to estimate
the prevalence of each factor, which can be calculated as the percentage of
control (i.e., normal) driving segments with the factor of interest present.

As multiple crashes and baselines can be derived from one driver, a mixed-
effect random logistics model was adopted to incorporate the driver-specific
correlation. This model is shown as follows:

Yij ∼Bernoulli
�
pij

�
,

logit
�
pij

�
= β0 + β1Xij + αi ,

where Yij is the response variable for driver i, event j. Yij =
�
1 crash
0 baseline

. pij

is the probability of being in a crash; β0 and β1 are the regression coeffi-
cients; αi is a driver-specific random term; Xij is the indicator variable for a
contributing factor. The odds ratio can be calculated as expðβ1Þ.

Analyses were conducted for both crashes and controls overall for each of
the fourmajor categories (i.e., impairment, performance error, judgment error,
and distraction). Analyses were also performed for subcategories of eachmajor
category (e.g., radio interaction within distraction). The risks associated with all
contributing factors were then evaluated through a comparison with alert,
attentive, and sober driving episodes (operationally defined herein as “model”
driving). Thus, it is important to note that the resulting odds ratios reflect the
elevated driving risk for a contributing factor compared with the model
driving condition.

Several criteria were used for determining the exposed group. As im-
pairment typically has a higher safety impact than distraction, impairment
was excluded from the distraction assessment, but distraction was included in
the impairment analysis. Distraction and impairment were not filtered in the
driving error evaluations as the latter differs in many aspects from distraction
and impairment.

Findings
Crash events were gathered and analyzed in detail through video
observations and measurements of 3,542 drivers recruited for the
SHRP 2 NDS. The drivers were recruited from six data collec-
tion sites across the United States and included drivers aged
16–98, approximately equally divided by gender (5). Although all
age groups of drivers were represented, drivers under age 25 and
over age 65 were purposefully oversampled relative to the gen-
eral US driver population because these groups have an elevated
crash risk (8, 12).
The SHRP 2 NDS crashes investigated in this paper included

only those during which injury or property damage occurred.
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Minor collisions where there was no property damage and near-
crashes were not included. Thus, to our knowledge, this paper
represents the first crash-only analysis using an NDS dataset
where there is sufficient statistical power to assess both the risk
and prevalence associated with a variety of causal factors.
Fig. 1 illustrates the overall prevalence of distraction and error

in crashes. For this figure, error includes both driver/perfor-
mance judgement errors with and without impairment. As
shown, 87.7% of the crashes in the SHRP 2 NDS had at least one
of the error/impairment or distraction factors present. Prior re-
search estimates that up to 94% of crashes involve these factors
(1). Thus, it seems that the main categories used in this analysis
capture the majority of cases in which driver errors, impairment,
or distraction are present. It is also important to note that, unlike
data derived from police accident reports, naturalistic data allow
analysts to directly observe via video precrash and crash events as
they occur (2). Thus, 87.7% may be a more accurate estimate of
driver error, impairment, and distraction as contributing factors—at
least as they are defined here.
Other important findings from Fig. 1 show that nearly three-

quarters of the crashes (i.e., 73.7%) involved some type of error;
68.3% of crashes involved some type of observable distraction;
and 54.5% of crashes involved both. These findings conclusively
show the detrimental impact of distraction alone and in combi-
nation with a variety of other sources of error and impairment.
Fig. 2 shows the odds ratios for each of the four major cate-

gories and their relative subcategories. Also shown in Fig. 2 are
the 95% confidence intervals for the odds ratios (in paren-
theses) and the observed prevalence of each category (i.e., the
percentage of time a factor was present during the normal
driving condition).

Overall Risk and Prevalence Findings. As shown in Fig. 2, numerous
factors significantly increase driving risk (i.e., odds ratio greater
than the neutral value of 1.0). These risk estimates provide crucial
information for educating drivers, law enforcement officials, driver
educators, vehicle designers, and policymakers regarding what
constitutes the greatest risks to drivers. From an overall perspec-
tive, the driver performance error category had the highest risk at
18.2 times the risk of model driving. Within that category, several
subcategories had high odds ratios, including inexperience with
the vehicle or roadway, right-of-way error, and sudden or im-
proper braking or stopping. These particular errors had estimated
risks that were hundreds of times higher than model driving, al-
though the prevalence of these riskiest errors was low.
The prevalence data also show interesting numbers overall.

Notably, more than 50% of the time, some type of distraction
prevents drivers from engaging in the primary task of driving.
When combined with an odds ratio 2.0 times higher than model
driving, it is clear that driving while distracted is detrimental to

driver safety. To put such prevalence into perspective, of the 905
injurious and property damage crashes captured in the SHRP 2
NDS database, only 0.1% involved some form of vehicle failure
(e.g., mechanical breakdown or flat tire).

Observable Impairment. Three types of impairment were included
in the operational definition of this category: apparent drug/
alcohol impairment; drowsiness/fatigue; and emotion, including
visible anger, sadness, crying, and/or emotional agitation. Recall
that these sources of impairment had to be observable from a 20-s
video segment that occurred just before the crash, or as part of a
stratified random baseline segment. Thus, it is likely that these
cases of impairment represent more severe scenarios that may be
more easily observed (e.g., apparent anger) and exclude some
cases that were less severe (e.g., anger that may be less apparent
and, thus, not observable).
As shown in Fig. 2, overall impairment was observed in 1.92%

of the baselines and increased the risk of a crash by 5.2 times
compared with model driving. Observable drug/alcohol impair-
ment increased the crash risk ∼35.9 times and had a prevalence
of nearly 0.1%. Based on recent research (13), one would expect
drug/alcohol impairment to be somewhat higher and the odds
ratio to be somewhat lower than these values, thus supporting
previous statements that this analysis likely represents the more
severe impairment cases present in the SHRP 2 NDS dataset.
Drowsiness/fatigue is risky at an individual case level (i.e., odds
ratio of 3.4) and was observed in 1.57% of baselines.
The SHRP 2 NDS analysis provides unique insight into another

category operationally defined as impairment: an observable ele-
vated emotional state, most frequently anger but including sad-
ness, crying, and/or emotional agitation. The risk of driving while
in such an elevated emotional state is 9.8 times higher than model
driving. Although not as prevalent as some of the other driver
behaviors shown in Fig. 2, driving while in an elevated emotional
state is not rare, occurring in ∼0.2% of baselines.

Driver Performance Error. As shown in Fig. 2 and described above,
driver performance error increases the overall risk of a crash by
18.2 times compared with model driving. The prevalence of some
type of performance error occurring during a trip was 4.81%
overall. In general, performance errors increase crash risk greatly,
although most are not prevalent. The more prevalent driver per-
formance errors are failing to signal (2.27% of baselines), a stop/
yield sign violation (1.05% of baselines), driving too slowly (0.97%
of baselines), and making an improper turn (0.51% of baselines).

Driver Judgment Error. This category has been operationally de-
fined to include aspects of a momentary lapse of driver judg-
ment, such as speeding well above the speed limit or driving too
fast for conditions. Driver judgment error also includes other
forms of aggressive driving (e.g., illegal passing or following too
closely). As shown in Fig. 2, this category has both a high odds
ratio overall (i.e., 11.1 times the risk of model driving) and a
relatively high prevalence of occurrence (4.22% of baselines).
Fig. 2 also shows that all of the judgment error subcategories, as
defined, have high odds ratios ranging from 5.3 to 34.8. Of note
is that the prevalence values for some driver judgment errors
are low, including following too closely (observed in 0.07% of
baselines). This is notable because this factor appears frequently
on police accident reports and in crash investigations. It has been
suspected for some time that factors such as following too closely
have become a “catch-all” category on police reports and in
crash investigations because it is difficult to retroactively assess
what happened leading up to an event such as a rear-end crash
(14). By contrast, it may also be suspected that some categories,
such as distraction, have been underreported for a number of
years for similar reasons.

Distracted Error Impaired Prevalence

YES
YES

YES 3.4%
NO 51.1%

NO
YES 0.1%
NO 13.7%

NO
YES

YES 2.7%
NO 16.5%

NO
YES 0.2%
NO 12.3%

Total 100%

Fig. 1. Prevalence of driver factors before crashes.
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Observable Distraction. A remarkable finding of this analysis is how
often drivers engage in potentially distracting activities. As shown in
Fig. 2, drivers engaged in such activities during 51.93% of baselines
overall; Fig. 1 shows that distraction was a factor in 68.3% of the
905 injurious and property damage crashes observed in the SHRP 2
NDS. Overall, the risk of distraction while driving was 2.0 times

higher than model driving. In essence, this means drivers are at
double the risk for more than one-half of their trips when they
choose to engage in a distracting activity. Calculating a population-
attributable risk for distraction overall shows that potentially 36%,
or 4 million of the nearly 11 million crashes occurring in the United
States annually (15), could be avoided if no distraction was present.

The baseline prevalence of a factor represents the percentage of me the factor was present during the normal driving condi on.

*Observable from 20-second pre-crash and baseline sample video segments

**Observable from 6-second pre-crash and baseline sample video segments

O.R. (95% CI) Baseline Prevalence
Observable Impairment*
Overall 5.2 (3.8 - 7.1) 1.92%
Drug/alcohol 35.9 (17.0 – 75.8) 0.08%
Drowsiness/fa gue 3.4 (2.3 - 5.1) 1.57%
Emo on (anger, sadness, crying, and/or emo onal agita on) 9.8 (5.0 – 19.0) 0.22%

Driver Performance Error
Overall 18.2 (14.8 – 22.3) 4.81%
Major error sub-categories (observed in crash and baseline events)

Apparent inexperience with vehicle/roadway 204.5 (111.1 – 376.6) 0.07%
Blind spot error 55.1 (21.6 – 140.6) 0.05%

Improper turn 92.1 (68.8 – 123.4) 0.51%
Right-of-way error 936.1 (123.8 – 7078.3) 0.01%

Signal viola on 28.3 (15.9 – 50.2) 0.19%
Stop/yield sign viola on 7.4 (4.9 – 11.4) 1.05%

Wrong side of road 22.3 (12.0 - 41.5) 0.19%
Driving too slowly 2.3 (1.1 – 4.8) 0.97%

Sudden or improper braking/stopping 247.8 (53.1 - 1156.2) 0.01%
Failed to signal 2.5 (1.5 - 4.0) 2.27%

Driver Momentary Judgment Error (Speeding/Aggressive Driving)
Overall 11.1 (9.0 - 13.8) 4.22%
Aggressive driving (general observed behavior) 34.8 (17.2 – 70.5) 0.10%
Speeding (over limit and too fast for condi ons) 12.8 (10.1 - 16.2) 2.77%
Speeding/unsafe in work zone 14.2 (3.9 – 52.0) 0.05%
Illegal/unsafe passing 14.4 (7.2 - 28.8) 0.18%
Following too closely 13.5 (4.4 - 41.4) 0.07%
Inten onal signal viola on 15.3 (7.9 – 29.9) 0.19%
Inten onal stop/yield sign viola on 5.3 (3.4 – 8.4) 1.04%

Observable Distrac on**
Overall 2.0 (1.8 - 2.4) 51.93%
Major distrac on sub-categories (observed in crash and baseline events)

In-vehicle radio 1.9 (1.2 – 3.0) 2.21%
In-vehicle climate control 2.3 (1.1 – 5.0) 0.56%
In-vehicle device (other) 4.6 (2.9 – 7.4) 0.83%

Total in-vehicle device 2.5 (1.8 - 3.4) 3.53%
Cell browse 2.7 (1.5 – 5.1) 0.73%

Cell dial (handheld) 12.2 (5.6 - 26.4) 0.14%
Cell reach 4.8 (2.7 - 8.4) 0.58%

Cell text (handheld) 6.1 (4.5 - 8.2) 1.91%
Cell talk (handheld) 2.2 (1.6 - 3.1) 3.24%

Total cell (handheld) 3.6 (2.9 - 4.5) 6.40%
Child rear seat 0.5 (0.1 – 1.9) 0.80%

Interac on with adult/teen passenger 1.4 (1.1 – 1.8) 14.58%
Reading/wri ng (includes tablet) 9.9 (3.6 - 26.9) 0.09%

Ea ng 1.8 (1.1 - 2.9) 1.90%
Drinking (non-alcohol) 1.8 (1.0 - 3.3) 1.22%

Personal hygiene 1.4 (0.8 - 2.5) 1.69%
Reaching for object (non-cell phone) 9.1 (6.5 - 12.6) 1.08%

Dancing in seat to music 1.0 (0.4 - 2.3) 1.10%
Extended glance dura on to external object 7.1 (4.8 - 10.4) 0.93%

Fig. 2. Odds ratios and prevalence of impairment, errors, and distraction.
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Of the individual distracting activities listed in Fig. 2, those that
require the driver’s eyes to be away from the forward roadway
have the highest risk (i.e., risk greater than the 2.0 overall dis-
traction risk). Thus, handheld cell dialing (odds ratio of 12.2),
reading/writing (odds ratio of 9.9), and reaching for a non-cell
phone object (odds ratio of 9.1) had the highest risks. Other ac-
tivities that require eyes-off-road time resulting in increased crash
risk include texting on a handheld cell phone (odds ratios of 6.1),
reaching for a handheld cell phone (odds ratio of 4.8), browsing on
a cell phone (e.g., reading email or checking stocks; odds ratio of
2.7), extended glance duration to an external object (odds ratio of
7.1), interacting with a nonradio/non-heating, ventilation, and air
conditioning (HVAC) in-vehicle device (e.g., touchscreen menus;
odds ratio of 4.6), and adjusting the HVAC controls of the vehicle
(odds ratio of 2.3).
In terms of prevalence, observable interaction with an adult/

teen passenger was the highest (14.58% of baselines). Passenger
interaction had a risk 1.4 times higher than model driving. Pre-
vious research conducted using crash databases showed that an
adult driver traveling with passengers generally experienced what
is known as a protective effect, or an odds ratio below the neutral
value of 1.0 (16). There are likely several reasons why the results
found herein differ. First, comparisons made in the SHRP 2
NDS use model driving in which data analysts have verified that
the baseline group is alert, attentive, and sober, at least from
direct observation. This is not the case with previous crash da-
tabase analyses. Another factor may be that the cases analyzed in
this study included only observable passenger interactions. By
contrast, prior crash database analyses could only determine
passenger presence, not active interactions. Last, there is a large
sample of teenaged drivers present in the SHRP 2 NDS dataset.
Prior research shows that teen drivers traveling with a teen
passenger have a higher crash risk (17–19).
Other distracting activities that drivers perform in a car were

somewhat more benign in terms of risk, including eating and
drinking (nonalcohol); personal hygiene, which included a vari-
ety of factors, such as a driver fixing his or her hair and nails; or
tuning the radio. An interesting finding in the SHRP 2 NDS
crashes is the absence of factors previously thought to increase
driver risk. For example, media sources often talk about putting
on makeup as a distracting activity, but no crashes in the SHRP 2
NDS occurred when such an activity was performed, probably
due to a very low prevalence. Similarly, previous research, the
media, and parents often talk about distraction associated with
interacting with children in the back seat as a dangerous activity
(e.g., ref. 20). However, the results of this study show that
interacting with children in the rear seat has a protective effect,
with an odds ratio significantly less than 1.0 (i.e., 0.5). This may
be because parents generally drive more safely with children in
the car. Thus, parents adapt their driving behavior accordingly
when interacting with their children in the back seat by slowing
down or increasing headway in traffic.
A recent controversy relative to driving distraction is the risk

associated with talking on a cell phone. Some epidemiological
studies conducted overseas (21) and laboratory studies in the
United States (22) have shown that such behavior is risky,
whereas smaller NDSs and other epidemiological studies have
shown that it is not (8, 23). The SHRP 2 NDS results estimate
the risk of talking on a handheld cell phone to be 2.2 times
higher than model driving, or slightly higher than the overall
distraction risk. This result seems consistent with other natural-
istic and epidemiological studies when one considers the fol-
lowing: (i) the comparison made within the SHRP 2 NDS uses
model driving, as defined previously, which is not true of crash
database analyses; and (ii) a recent study (9) showed that odds
ratios are somewhat underestimated when minor collisions and
near-crashes are used as surrogates for crashes in the estimates
obtained in previous NDSs. Because this analysis is (to our

knowledge) the first of its kind to use only crashes, the de-
termined odds ratio of 2.2 for talking on a handheld cell phone
seems consistent and accurate.
It is important to note the overall impact of handheld cell

phones on crash risk. The overall risk of interacting with a
handheld cell phone is 3.6 times higher than model driving. This
is consistent with a large-scale epidemiological study performed
in Australia that estimated the overall risk of handheld cell
phone use to be 4.9 (21). Although not the highest risk seen in
Fig. 2, the prevalence (6.40%) makes handheld cell phone use of
particular concern. The results of this study provide hard and
conclusive evidence that crashes and resulting injuries would be
reduced if drivers did not use handheld cell phones, thus sup-
porting previous recommendations that handheld cell phones be
banned from moving vehicles, except in cases of emergency (24).

Discussion
On average, the crash rate—particularly the fatal crash rate—has
generally been declining in the United States for several decades
(25). This improvement is due to a variety of factors, including
the reliability and crashworthiness of vehicles and the design
and conditions of US roadways. Despite this improvement, the
United States has not kept pace with other developed countries
in terms of traffic safety. After being ranked near the top in the
1990s in terms of low fatality rates, the United States currently
ranks 17th in fatalities per mile traveled out of 29 countries with
available data and is ranked behind countries in Europe, Asia,
and the Middle East (26). A large part of the reason why the
United States has fallen behind in traffic safety may be attributed
to factors associated with driver behavior and performance. Al-
most 20 y ago, VTTI embarked on the development of a new
research method (i.e., NDS) to better understand specifically
which driver performance and behavioral factors were causing
crashes (2). This method involved instrumenting drivers’ own
cars with unobtrusive video cameras and other sensors to collect
continuous driving data for several months or even years. The
goal of the NDSs was to assist in the development of improved
countermeasures, from crash avoidance systems to better driver
education.
In 2006, TRB of NAS sponsored the first large-scale NDS that

covered 3,542 drivers participating 1–2 y at six data collection sites
across the United States. The resulting database, which was
completed and became active in April 2015, contains more than
35 million miles of continuous naturalistic driving data (5, 11). The
analysis described herein is (to our knowledge) the first of its kind
to use crashes only (i.e., 905 injurious and property damage
crashes in the SHRP 2 NDS) to determine the risk and prevalence
of a number of driver factors associated with crashes, including
observable impairment, driver performance errors, driver judg-
ment errors, and observable driver distraction. Model driving
episodes (i.e., alert, attentive, and sober) were drawn from a
stratified random sampling of 19,732 baseline events used as a
comparison group. The baseline samples were stratified by the
number of hours that each participant drove during the SHRP 2
NDS. For the purposes of this paper, the contributing factors were
compared with model driving, a calculation that cannot be ac-
complished using crash databases. That is, the comparisons shown
here are the risks associated with a particular driver behavior or
performance factor compared with cases of model driving per-
formance and behavior. It is important to note that this study is (to
our knowledge) the first of its kind to use a sufficiently large
number of captured crash events for analysis without the need for
surrogate measures.
Several important previously unidentified discoveries were

made in this analysis, including the following: (i) Driving while
observably angry, sad, crying, and/or emotionally agitated increases
the risk of a crash by 9.8 times compared with model driving.
(ii) Several driver performance errors, including committing a
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right-of-way error, sudden or improper braking or stopping, and
being unfamiliar with a vehicle or roadway, had the highest risks
of any contributing factors analyzed for this study. The risk es-
timates for these errors were hundreds of times higher than
model driving. (iii) Driver judgment errors (e.g., speeding well
above the speed limit or traveling too fast for conditions) and
other aggressive driving behaviors increase crash risk 11.1 times
more than model driving. (iv) Interacting with in-vehicle devices
that do not include the more standard radio or HVAC tasks, such
as using a touchscreen interface, had a high odds ratio (i.e., 4.6
times higher than model driving) and a fairly high baseline prev-
alence (0.83% of trips). (v) Several factors previously thought to
constitute significant driver risk factors, such as particular distrac-
tions (e.g., applying makeup) or errors (e.g., following too closely),
were found to be much lower in prevalence in this analysis. Other
factors posed much lower risks than previously thought, or even had
a protective effect (e.g., interacting with children in the rear seat).
The conclusions made herein will better inform policymakers,

driver educators, law enforcement agencies, vehicle designers,
and the general public about the risks of various sources of im-
pairment, error, and distraction so that appropriate actions may
be taken to help mitigate such risks.
The most notable finding from this study is the degree to which

distraction can be of detriment to drivers in the United States.
Drivers are engaging in distracting activities more than 50% of the
time while they are driving, resulting in a crash risk that is 2.0
times higher than model driving. Activities that require a driver to
take his or her eyes off of the forward roadway result in the
greatest risks. Actively interacting with an adult or teenaged
passenger is the most prevalent individual activity, but it has a

relatively low associated risk. By contrast, interacting with a
handheld cell phone occurs more than 6% of the time, with a risk
that is 3.6 times higher than model driving. In addition, cell
phone activities have changed even in recent years with the
emergence of texting and browsing online. This is probably the
single factor that has created the greatest increase in US crashes in
recent years, working against the general trend of crash and fatality
reduction. An increased need or want to remain connected and
productive via cell phones (27) has the potential to escalate dis-
traction-related crashes into the future.
Estimating the population-attributable risk for distraction overall

shows that potentially 4 million of the 11 million crashes that occur
each year in the United States (15) could be avoided if distraction
was not a factor. As stated, the SHRP 2 NDS sample had a pur-
poseful overrepresentation of younger drivers because they are at
higher risk in general (8), meaning that this estimate may be
somewhat high for the general population today. However, youn-
ger drivers represent the beginning of a new generation of drivers
who engage in a full range of distracting behaviors (e.g., browsing
on a cell phone) relative to their older counterparts. Thus, these
estimates could well represent the near future if decisive actions
are not taken to reduce distraction-related crashes. Although it is
obviously not feasible to eliminate all driving distraction, counter-
measures such as continued driver awareness and education pro-
grams, better enforcement of existing laws (e.g., handheld cell
phone bans in some states), and emerging crash avoidance systems
on vehicles (e.g., forward collision warnings, automated braking
systems) could have a measureable impact on reducing distraction-
related crashes.

1. Singh S (2015) Critical Reasons for Crashes Investigated in the National Motor Vehicle
Crash Causation Survey. Traffic Safety Facts Crash•Stats (National Highway Traffic
Safety Administration, Washington, DC), Report No. DOT HS 812 115.

2. Dingus TA, et al. (2006) The 100-Car Naturalistic Driving Study: Phase II—Results of
the 100-Car Field Experiment (National Highway Traffic Safety Administration,
Washington, DC), Contract No. DTNH22-00-C-07007.

3. Carney C, et al. (2015) Using Naturalistic Driving Data to Assess Vehicle-to-Vehicle
Crashes Involving Fleet Drivers (AAA Foundation for Traffic Safety, Washington, DC).

4. Carney C, et al. (2015) Using Naturalistic Driving Data to Assess the Prevalence of
Environmental Factors and Driver Behaviors in Teen Driver Crashes (AAA Founda-
tion for Traffic Safety, Washington, DC).

5. Dingus TA, et al. (2015) Naturalistic Driving Study: Technical Coordination And
Quality Control (Transportation Research Board, Washington, DC), SHRP 2 Report
No. S2-S06-RW-1.

6. Dingus T (2002) Human factors applications in surface transportation. Frontiers of
Engineering: Reports on Leading-Edge Engineering from the 2002 National Academy
of Engineering Symposium (National Academies Press, Washington, DC), pp 39–42.

7. Dingus TA, Hanowski RJ, Klauer S (2011) Estimating crash risk. Ergon Des 19(4):8–12.
8. Klauer SG, et al. (2014) Distracted driving and risk of road crashes among novice and

experienced drivers. N Engl J Med 370(1):54–59.
9. Guo F, Klauer SG, Hankey JM, Dingus TA (2010) Near crashes as crash surrogate for

naturalistic driving studies. Transp Res Rec 2147:66–74.
10. Guo F, Hankey JM (2009)Modeling 100-Car Safety Events: A Case-Based Approach For

Analyzing Naturalistic Driving Data (National Surface Transportation Safety Center
for Excellence, Blacksburg, VA), Report No. 09-UT-006.

11. Virginia Tech Transportation Institute (2015) Data Description for Why People Crash.
Available at ezid.cdlib.org/id/doi:10.15787/VTT1VC7C. Accessed November 6, 2015.

12. National Highway Traffic Safety Administration (2012) Older Population. Traffic
Safety Facts (National Highway Traffic Safety Administration, Washington, DC), Re-
port No. DOT HS 812 005.

13. Compton RP, Berning A (2015) Drug and Alcohol Crash Risk. Traffic Safety Facts Re-
search Note (National Highway Traffic Safety Administration, Washington, DC), Re-
port No. DOT HS 812 117.

14. Neale VL, Dingus TA, Klauer SG, Goodman M (2005) An overview of the 100-car
naturalistic study and findings. Proceedings of the 19th International Technical
Conference on the Enhanced Safety of Vehicles (National Highway Traffic Safety
Administration, Washington, DC), Paper No. 05-0400.

15. US Census Bureau (2012) Statistical Abstract of the United States. Available at

https://www.census.gov/library/publications/2011/compendia/statab/131ed.html.

Accessed February 5, 2016.
16. Lerner N, et al. (2007) Passenger age and gender effects on adult driver fatal crash

rate. Proceedings of the Fourth International Driving Symposium on Human Factors in

Driver Assessment, Training and Vehicle Design (University of Iowa Public Policy

Center, Stevenson, WA), pp 466–472.
17. Foss R, Goodwin A (2003) Enhancing the effectiveness of graduated driver licensing

legislation. J Safety Res 34(1):79–84.
18. Chen LH, Baker SP, Braver ER, Li G (2000) Carrying passengers as a risk factor for

crashes fatal to 16- and 17-year-old drivers. JAMA 283(12):1578–1582.
19. Simons-Morton BG, et al. (2011) The effect of passengers and risk-taking friends on

risky driving and crashes/near crashes among novice teenagers. J Adolesc Health

49(6):587–593.
20. Koppel S, Charlton J, Kopinathan C, Taranto D (2011) Are child occupants a significant

source of driving distraction? Accid Anal Prev 43(3):1236–1244.
21. McEvoy SP, et al. (2005) Role of mobile phones in motor vehicle crashes resulting in

hospital attendance: a case-crossover study. BMJ 331(7514):428.
22. Strayer DL, Drews FA (2004) Profiles in driver distraction: Effects of cell phone con-

versations on younger and older drivers. Hum Factors 46(4):640–649.
23. Fitch GA, et al. (2013) The Impact of Hand-Held and Hands-Free Cell Phone Use on

Driving Performance and Safety-Critical Event Risk (National Highway Traffic Safety

Administration, Washington, DC), Report No. DOT HS 811 757.
24. Dingus TA (2001) Driver Distractions: Electronic Devices in the Automobile. Testimony

to United States House of Representatives Committee on Transportation and In-

frastructure Subcommittee on Highways and Transit. Available at commdocs.house.

gov/committees/Trans/hpw107-17.000/hpw107-17_0f.htm. Accessed November 6, 2015.
25. National Center for Statistics and Analysis (2014) 2013 Motor Vehicle Crashes:

Overview. Traffic Safety Facts Research Note (National Highway Traffic Safety Ad-

ministration, Washington, DC), Report No. DOT HS 812 101.
26. World Health Organization (2013) Global Status Report on Road Safety 2013: Supporting

a Decade of Action (World Health Organization, Geneva), Available at www.who.int/

violence_injury_prevention/road_safety_status/2013/en/. Accessed November 6, 2015.
27. Pickrell TM, Ye TJ (2013) Driver Electronic Device Use in 2011 (National Highway

Traffic Safety Administration, Washington, DC), Report No. DOT HS 811 719.

Dingus et al. PNAS | March 8, 2016 | vol. 113 | no. 10 | 2641

SO
CI
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
5.

24
3.

17
1.

12
4 

on
 M

ar
ch

 9
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

85
.2

43
.1

71
.1

24
.

http://ezid.cdlib.org/id/doi:10.15787/VTT1VC7C
https://www.census.gov/library/publications/2011/compendia/statab/131ed.html
http://commdocs.house.gov/committees/Trans/hpw107-17.000/hpw107-17_0f.htm
http://commdocs.house.gov/committees/Trans/hpw107-17.000/hpw107-17_0f.htm
http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/

